Driving the Unknown

ODD-aware Decision Making for Autonomous Vehicles

Josep Maria Barbera, Jorge Villagra {josep.barbera, jorge.villagra}@csis.es

Centre for Automation and Robotics (CAR, CSIC-UPM), Spain

In pursuit of more general, safe, and interpretable autonomous driving systems, this thesis aims to develop a maneuver-planner architecture that uses Reinforcement Learning (RL) to adapt to the Operational Design Domain (ODD)

Motivation

- ODD defines the precise conditions under which an vehicle safely autonomous can operate, encompassing:
 - o driving scenarios (e.g., highway, urban, rural)
 - o environmental conditions (e.g., weather, lighting)
 - O dynamic elements (e.g., vehicles, pedestrians, obstacles)
- ODD monitoring allows the vehicle to adapt its **behavior** accordingly while also **quantifying risk**.
- Partially Observable Markov Decision Processes (POMDPs) make hidden states tractable (e.g., occlusions, sensor noise, environmental disruptions), while **RL** optimizes belief-state policies, enabling more robust and reliable decision-making under partial observability.

Figure 2. RL General Framework with Belief States. Main diagram inspired by [1]; environment icon from [2].

Use Case Example

- Lane Change Maneuver: high level decision NOT CHANGE, CHANGE RIGHT, CHANGE LEFT
- On highways (2 or more lanes)
- States inferred from observations (noisy measurements or occlusions)

Figure 1: ODD changes with context. On the left, three areas are highlighted: urban (A), CAR facilities (B), and test tracks (C). On the right, the CAR facilities ODD is detailed, showing occlusions, signal interferences, a parking area, a 20 km/h speed limit, and dynamic elements such as pedestrians, animals, motorcycles, cars, trucks, and buses.

Objectives

- To formulate a realistic and generalized decision-making problem for autonomous vehicles that accounts for uncertainty, partial observability, and diverse urban driving conditions.
- To train adaptive decision policies that ensure safe and efficient behavior in complex, real-world urban and high speed environments.
- To implement and assess a maneuver-planner architecture that remains effective across diverse contexts:
 - traffic density
 - o potential **hazards** (e.g., emergency vehicles, road works)
 - O degraded conditions (e.g., sensor failures, poor connectivity, adverse weather)

 Action	State Variables	ODD Examples
NOT CHANGE	p_{OV}	Traffic density
CHANGE LEFT	d_{OV}	Sensor failure (e.g., GPS loss)
CHANGE RIGHT	v_{OV}	Occlusion of other vehicles

Figure 3. Action set, corresponding state variables, and ODD examples for the lane change maneuver

Figure 4. Implementations and new architectures are validated in the experimental platforms

Methodology and Validation

- Development on ROS2 using Lanelet2 maps [3].
- Training and initial testing in CARLA, complemented by closed-loop simulation validation in SCANeR [4].
- Final test on real vehicles, progressively from area C to B and then A.

References

- S. L. Brunton, Machine learning meets control theory, Video, Reinforcement learning, Cassyni, 2021. [Online]. Available: https://doi.org/10.52843/cassyni.x2t0sp
- ASAM, OpenODD: Concept Paper, Oct. 2021. [Online]. Available: https://www.asam.net/standards/detail/openodd
- F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt, et al., Lanelet2: A high-definition map framework for the

future of automated driving, in Proc. IEEE Intell. Trans. Syst. Conf., Hawaii, USA, 2018.

